Transistor Matching for an Accuphase E-202 Amplifier Repair

I’m repairing a gorgeous Accuphase E-202 integrated amplifier and there’s a need for careful transistor matching in audio gear like this.

Choosing and matching transistors correctly is critically important when repairing or restoring audio electronics. I’ve learned this over the years, through experience and from people who’ve been doing this for much longer than I have. In this article, I look briefly at matching small signal transistors.

Matching transistors helps an amplifier run well. That’s why Accuphase took the care to do it when they built these amplifiers, but sadly, many repairers seem to take less care. Most just whack in whatever transistors they have lying around and hope for the best.

Get transistor matching wrong though, and your unit will exhibit high levels of noise and distortion, DC offsets, or worse. The other consideration is that many faults are mistakenly attributed to capacitor problems, when they are in fact caused by drifty, noisy or mismatched transistors.

The E-202

This beautiful Accuphase E-202 had some gremlins. Apart from needing a major service, the unit had a fault that was especially irritating, for her owner and me, causing the unit to randomly go in and out of protection.

In this E-202, there were several pairs of mis-matched transistors from previous repair goofs. Several original pairs and single transistors had also drifted over time.

These factors caused DC asymmetry in the amplifier modules and instability in the protection circuit. The DC asymmetry in the amplifier blocks can be trimmed out, but noise and distortion are compromised. There’s no trimming possible in the protection circuit though, so that’s a bigger issue.

Whoever worked on this before me apparently replaced only one device out of a matched pair. What’s worse is that they used a different device type, creating problematic mis-matched pairs. Worse still, these different parts didn’t match the specs for the original parts, a common error.

One of the matched pairs in the E-202. This is a complementary pair, not a differential pair. With complementary pairs, gain matching is less critical, but the parts have to be complementary. As this unit came to me, these were not complementary pairs, signs a repairer is lazy, or just doesn’t know any better.

From a technical standpoint, this isn’t acceptable even in a simple amp or preamp. It’s a definite no-no in a high-end hi-fi amplifier, the distortion and noise specs of which depend on carefully matched pairs.

Transistor Matching Basics

Let’s say one transistor in a differential pair becomes noisy, a common occurrence in preamplifiers and amplifiers. From worst to best practice, here are the repair options:

  1. Replace only the noisy transistor, with a different, incorrect type. Worst idea, very common.
  2. Replace only the noisy transistor, with an identical, correct part. Better idea, less common, good practice.
  3. Replace both transistors with an identical gain-matched pair from one batch. Least common, best practice.
I hand matched this differential pair, found at the input of each amplifier module. Having 50 or 100 transistors to choose from allows me to select perfectly matched pairs like this. Sometimes pairs like these are thermally bonded together to ensure even better matching as they warm up.

If we are dealing with complementary pairs, ie two different but well-matched transistors designed to work as a pair, one should always use the correct complementary pair, or another complementary pair with very similar specifications.

When transistor matching, it’s critically important to:

  1. Select the right transistor for the role
  2. Have enough of those transistors to enable you to
  3. Hand-match parts where possible
Achieving the Match

The trick is to be set up so that you can match parts when needed. A few things help, like learning about the commonly used transistor types, the most important specs when matching, how to substitute parts and so on.

Having enough of the parts one is trying to match is critical. You want at least 50, preferably 100 transistors of a given type, from the same batch. Spread this over some commonly found transistors and you can see the need to carry some stock.

You also need equipment. A curve tracer is a great first choice, something like the Tektronix 576 is ideal. These are big, heavy, complex and expensive however. Instead, I use a Peak Atlas DCA Pro DCA75, an excellent, compact and accurate semiconductor analyser and curve tracer.

My transistor matching setup, with the Accuphase E-202 amplifier boards in the background. There are nearly 100 transistors here I think, all of the same type and from the same batch. I’m using my Peak DCA75 to match current gain within a small window. The DCA75 is a low-current curve tracer, very handy for matching small signal transistors like these.

Then you get testing, recording results as you go. The idea for differential pairs is to match current gain or hFE as closely as possible, within 1 or 2 if possible. It’s also best not to hold the transistors when testing, as this changes their hFE.

Using the DCA75 to match a pair of vintage transistors to replace a pair that have gone out of spec on the protection board. In the end, I replaced 5 transistors on this board.

I replaced some complementary pairs in this E-202, plus some differential pairs. Not all of them needed replacing, but whilst I was inside, I went ahead and did it anyway. Two pairs of transistors on the protection board were especially important in this repair and one device was leaky. In the end, I tested all eight, and replaced five transistors in the circuit.

Results

With the correct approach, it’s possible to fix most semiconductor problems one might find even in old equipment like this E-202. I keep stock of replacements for all the devices in these lovely amplifiers.

Installing several matched pairs of devices greatly improved the overall performance of the amp and the protection circuit now runs reliably. The unit will run and sound so much better with correctly matched parts.

If you’d like to discuss matched transistors for your gear, just get in touch!

Feel free to leave a comment and share your thoughts. Please keep it polite and respectful :)